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IGPP climate study group
• “The primary purpose of the Study Group is to 

provide a forum for scientists across the lab to 
exchange ideas and form new collaborations. The 
presentations are meant to be broad enough to engage 
the wide cross-section of scientists interested in 
climate change and its impacts.

• The group presentations will focus on the following 
topics: climate change science, linkages between 
climate change and energy security, and linkages 
between climate change and socio-economic 
impacts.”



Biological perspective

• BSc in Biology
• MSc in Forestry-Ecosystem Processes (carbon 

cycle)
• PhD in Forestry-Tree Physiology, stable 

isotopes
• Postdoc-Ecosystem-scale stable isotopes



Terrestrial ecosystems: who cares?

• Major driver of global CO2,
H2O and energy cycles i.e.
major climate driver

• Our primary food source

• Where we live



Terrestrial 
ecosystems 

impact many 
primary climate 

drivers



“Bottom-up” climate forcing

Narisma, et al., 2003. The role of biospheric feedbacks in the simulation 
of the impact of historical land cover change on the Australian January climate. 
Geophys. Res. Letts., 30: 2168 

Terrestrial exchange of CO2,
H2O and sensible heat are 
drivers of local climate



Terrestrial carbon cycle.  
Plant biomass production = photosynthesis - respiration

CO2-photosynthesis CO2-canopy respiration

CO2-root and microbial respiration

Atmospheric CO2

Net ecosystem-atmosphere CO2 flux = 
photosynthesis – plant respiration – microbial respiration (decomposition)



The global carbon cycle



Terrestrial ecosystems are currently a carbon sink



Annual cycle of C uptake and release

Goulden et al. 1996.  Exchange of carbon dioxide by a deciduous forest:
Response to inter-annual climate variability. Science 271: 1576-1578



Terrestrial water cycle.  
Water storage = precipitation – evaporation and transpiration

Canopy and soil evaporation

Net ecosystem-atmosphere H2O flux = 
Precipitation– plant transpiration – canopy and soil evaporation – run-off

Precipitation

Soil water

Transpiration



Annual evapotranspiration and sensible heat
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Need to consider all impacts 
of ecosystems on climate

Randerson et al. 2006 The impact of boreal forest fire
on climate warming Science 314: 1130-1132



Climate impacts on terrestrial ecosystems



Regional Climate Impacts

Net annual income all crops

Corn annual harvested acres



Regional climate impacts



Regional climate change-Southwest
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Regional 
predictions



Monsoon rain is critical to carbon uptake in the southwest
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Stomata:  the ecosystem-atmosphere gas 
exchange interface

Photosynthesis = conductance*(Ca-Ci)
Transpiration = conductance*(Ea-Ei)



P
er

ce
nt

 0

10

20

30

40

11/94 11/95 11/96 11/97 11/98 11/99 11/00 11/01 11/02

   
   

   
   

   
   

   
   

   
   

 m
m

40
20

0

Breshears, Myers & Barnes – In prep.

S
oi

l W
at

er

Water
Availability
Threshold

P
re

ci
p.

DroughtDrought--Induced Tree MortalityInduced Tree Mortality

Aug 19 Oct 29May 23

11/94 11/95 11/96 11/97 11/98 11/99 11/00 11/01 11/02

Pinus edulis 3

-2
-4
-6W

at
er

 
P

ot
en

tia
l

M
P

a

Beetle
Infestation
Observed

Slide from Craig Allen



Feedbacks?

Figure 10.  1600m2 plot superimposed on a crown-map from 
LANL’s pinon-juniper research area

 



Climate Ecosystem
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What are the mechanistic causes of mortality, 
beyond the simple “drought and beetles kill trees”.

Model predictions

Mutually inclusive hypotheses:
1) runaway embolism
2) prolonged stomatal closure to prevent dehydration 
results in carbon starvation
3) prolonged foliar overheating due to lack of 
transpiration causes enzyme denaturation
4) prolonged carbon starvation results in reduced 
production of defense compounds
and others…



Prototype rain-out (gutters) and rain-out control (inverted gutters)



Current field site locations
Sevilleta LTER New Mexico



A new tool:  stable isotopes of 
atmospheric CO2



Stable carbon isotope ratios 
δ13C ≈ Ci/Ca

12C ~ 99% of 
atmospheric CO2

13C ~ 1% of atmospheric 
CO2 (1 extra neutron) 

δ13C ≈ (-)Ci/Ca



δ13C of biological materials is regulated by 
carbon isotope discrimination (Δ)
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Wet soil
High Ci/Ca

Dry soil
Low Ci/Ca

Ehleringer et al. 1992

Meinzer et al. 1993

Δ=[δ13Ca-δ13Cp] / [1+(δ13Cp/1000)]

Δ=a+(b-a)Ci/Ca



Δ is linked to soil water availability

McDowell et al. Plant, Cell and Environment, 2003
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CO2 takes the δ18O signature of water it passes 
through

Soil/root water δ18O = soil/root CO2 δ18O

Canopy water pool

Soil/root water pool

Canopy water δ18O = 
Canopy CO2 δ18O

CO2



Oxygen isotopes trace regional water cycle
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Data courtesy NOAA-Climate Monitoring Diagnostic Laboratory



δ13C and δ18O allow mechanistic 
interpretation of CO2 patterns



Ecosystem-scale δ13C and δ18O
Keeling plot analyses of ecosystem respired CO2, TA-51, 2004-2006
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δ13C records water availability
Figure 1.  TDL-based ecosystem respired δ13C from LANL's 
pinon-juniper observatory, 2004 through 2006
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δ18O records water sources
Figure 3.  δ18O of ecosystem respired CO2 at LANL's PJ woodland
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Models that may be used to infer water and 
carbon cycles can be driven using CO2 isotopes

120 140 160 180 200 220 240 260
10

20

30

40

50

60

70

80

120 140 160 180 200 220 240 260
10

20

30

40

50

60

70

800
5

10
15
20
25

 Leaf
 Soil
 Ecosystem              

δ18
O

 o
f r

es
pi

re
d 

C
O

2

Day of year (2006)

 Measured ecosystem

Pr
ec

ip
 (m

m
)

IGPP workshop, March 2007



Future path forward:  key issues

• Understand and model regional climate/ecosystem 
interactions

• Understand and model vegetation mortality
• Understand and validate isotope applications for 

“early warning” applications towards regional and 
global environmental impacts



A path forward

Integrating
measurements
models
remote sensing



A path forward

Integrating
isotopes

δ

δ

δ
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