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September 13, 2007, Petermann Glacier, northwest Greenland.

Photo credit NASA/EG&G/ATM team/Yungel



Challenges for Glaciologists

e Improve understanding
of processes

 Develop quantitative
prognostic models

e Incorporate small-scale
processes into whole
iIce-sheet models
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Addressing the IPCC AR4
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Rationale

Recognising the importance of ice sheets in controlling global
sea level, and the inadequacies in current efforts to model the
disintegration of ice sheets in response to a warming climate,
a Workshop is considered timely to develop a community
strategy on how best to (i) improve the physical
understanding of ice sheet processes responsible for rapid
change; (ii) incorporate improved physical understanding
Into numerical models; (iii) assimilate appropriate data into
the models for calibration and validation; and (iv) develop
prognostic whole ice-sheet models that better incorporate
non-linear ice-sheet response to environmental forcings (such
as change in surface mass balance, loss of buttressing from
floating ice shelves and ice tongues, and rising sea level).
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Workshop objectives

« Community Science Plan (5-10 yr)
— Centuries time frame
— Define overarching problems
— Requirements
— Timeline for solving stated problems

Not open ended: what can we achieve in 5-10 years?




Overarching guestions

« WIill climate change lead to irreversible (non-
linear, rapid) ice sheet response?

* Do rapid changes lead to large mass changes?

* Are observed rapid ice-sheet changes “natural
variability”, response to recent warming (ice
shelf break up), basal switch?




Integrated Approach

* Englacial

processes

» Surface

forcing

e Basal

conditions

 Marine margin
 Numerical

issues

10 of 28



High-resolution Full Stokes is not

Yes, we can, and should (long-term objective)

Remain aware of limitations

Processes necessarily excluded
e Shear margins
» Subglacial valleys
» Weak basal layers




What ice-sheet models need (1)

Better understanding of physics 7%

« What processes are important?
e On what scales should ice sheets be modeled?

« Acceptable parameterizations of physics




What happens under the ice?

lce covering
Antarctica

Continent with
subglacial lakes, rivers
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Subglacial morphology

Channels and trenches
Sediment versus hard beds
Geothermal heat flux

Bed topography at grounding
line

Depth (km)

1.2 -

1.6 —

2.0

2.4 —

2.8 —

3.2

L]
SEDIMENTS

ICE

BASEMENT

— 60

— 40

— 20

0

60

| |

50 40 30

Distance (km)

Ice speed (m/yr)



Elevation (m)

Grounding-line stabllity

« Topography of the bed
e Sediment deposition

 May be more important
to include than Schoof’s
transition zone
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http://www.sciencemag.org/content/vol315/issue5818/images/large/315_1559_F2.jpeg
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What ice-sheet models need (2)

Bed topography

* Resolve small-scale topography

Geothermal heat flux
« Spatial variations




Subglacial hydrology

e Subglacial lakes
— Water storage
— Importance of drainage events

 Interaction of till and subglacial water
« Addition of supraglacial meltwater
« Subglacial water budget of different hydrologic systems

e Coupling to ice-flow model
— Water transport and storage
— Sediment production and transport




What ice-sheet models need (3)

Sliding relation

» Basal pressure
» Water storage
» Sediment strength

ice flow
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Ice shelves and other (near)
floating peripherals

Mechanisms for break up

Role of seaice

Sub-shelf circulation and melting
Restraints on interior ice?




What ice-sheet models need (4)

Calving “law” that works for all
scales of icebergs and bits




Surface mass balance

= Accumulation

 Predict changes over time
e Coastal/slope areas
e Drifting snow

= Ablation

« Extent and duration
* Runoff and percolation



What ice-sheet models need (5)

Better meso-scale models for Greenland and Antarctica

e Accumulation does not depends on temperature only

» Changing circulation patterns s 0 e B R %
« Effect of changing sea-ice cover g p———— i
» Slope effects
AOGCM can provide the

boundary conditions, but are
Inadequate for applications
over the polar ice sheets
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Model Validation

“Evaluation and
assessment of model
capability will increasingly
be the focus of future
measurement activities.
Demonstrating model
capability is likely to be a
EARTH 3[:][[1[;[,",,] driver for developing and
ﬂI’PlII}ﬂII[IHanamSI‘ﬂl}[ evolving observation
2 systems and field
campaigns.”
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http://www.nationalacademies.org/
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" How well do our models
- apply to real ice sheets?

. » Model inter-comparisons
« Data for validation

-« Capability of simulating

past and current changes




What ice-sheet models need (6)

Data for calibration and validation
— What data?
— Open data access
— Compatible formats
— “easy to use”




The long road ahead....
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Thanks for
you attention
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Moaned “"Why can't you

It's clear climate change

‘ur asses?
Is reducing my range

So you must make big cuts to bad gases!”
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